Roll No. \square Total No. of Pages : 02
Total No. of Questions : 07
M.Sc.(Mathematics) (2019 Batch) (Sem.-2)

ALGEBRA-I
Subject Code : MSM-101-18
M.Code : 75129

Date of Examination : 17-01-2023
Time : 3 Hrs.
Max. Marks : 70

INSTRUCTIONS TO CANDIDATES:

1. SECTION-A is COMPULSORY consisting of FIVE questions carrying TWO marks each.
2. SECTION - B \& C. have THREE questions each.
3. Attempt any FOUR questions from SECTION B \& C carrying FIFTEEN marks each.
4. Select atleast TWO questions from SECTION - B \& C each.

SECTION-A

1. Write short answers :
a) Find the inverse of aif $(\boldsymbol{\sim}, *)$ is a group with $a * b=a+b-1 ; \forall a, b \mathcal{U} \mid$?
b) Prove that therfog no simple group of order 56.
c) Give an erimple to show that in a commutative ring R with unity, a prime ideal need not be the maximal ideal.
d) State first Sylow theorem.
e) What is a solvable group and give one example.

SECTION-B

2. a) Show that in a group of even order, the number of elements of order 2 is odd.
b) Show that a non-abelian group of order 6 is isomorphic to the symmetric group S_{3}.
3. a) Prove that a finite group is solvable if and only if its composition factors are cyclic groups of prime order.
b) Give an example of a non-abelian group each of whose subgroups is normal.
4. a) Prove that the alternating group A_{n} is simple if $\mathrm{n}>4$.
b) What is a simple group and give one example.

SECTION-C

5. a) Prove that every group of order p^{2} is abelian, where p is a prime.
b) For any ring R and any maximal ideal $A \neq R$, prove that the quotient ring R / A has no non-trivial ideals.
6. a) Prove that the sum of all the nil ideals in a ring R is itself-a nil ideal and it is the largest nil ideal in the ring R.
b) Let G be a finite abelian group of order n. Then, if p is a prime dividing n, show that there is a element $g \nabla_{\mathrm{G}}$ of order p.
7. a) State and prove second Sylow theorem.
b) Find all the homomorphisms from the ring of integers 1 to l.

NOTE : Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.

